980 nm 光纤激光器的研究进展

李平雪 杨 春 姚毅飞 池俊杰 赵自强 张光举 胡浩伟 (北京工业大学激光工程研究院,北京 100124)

摘要 980 nm 掺镱光纤激光器因为有望成为掺铒、掺镱光纤激光器的新型抽运源以及本身进行频率变换后可得 到优质的蓝绿激光而拥有极大的研究价值。介绍了获得 980 nm 光纤激光器的两大关键问题,即抑制四能级起振 和抑制重吸收效应,并分析了解决方法。介绍了三种工作方式下(即连续、调 Q、锁模),国内外研究机构在 980 nm 光纤激光器方面的实验研究进展和发展趋势,并对 980 nm 光纤激光器的应用和发展前景进行了展望。 关键词 光纤光学;光纤激光器;掺镱光纤;准三能级

中图分类号 O436 文献标识码 A doi: 10.3788/LOP50.100001

Research Progress of 980 nm Fiber Laser

Li Pingxue Yang Chun Yao Yifei Chi Junjie Zhao Ziqiang Zhang Guangju Hu Haowei

(Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract Yb-doped fiber laser systems operating around 980 nm have great potential to become new pump source for Er-doped and Yb-doped fiber lasers. Moreover, these sources can get blue green lasers with frequency conversion. Two important points to obtain 980 nm fiber lasers including overcoming four-level regime oscillation and re-absorption are discussed. Current research status of fiber lasers operating around 980 nm with different operation modes including continuous wave, *Q*-switch and mode-locking is introduced. At last, future applications and developments are also presented.

Key words fiber optics; fiber laser; Yb-doped fiber; quasi-three-level OCIS codes 060.2310; 140.3510; 140.3615; 140.3540

1 引 言

光纤激光器是近些年来激光领域研究的热点之一,它具有光束质量好、光-光转换效率高、体积小、结构 简单,可实现全光纤化等优点,在光通信、激光加工等领域都得到了广泛的应用。在众多光纤激光器中,掺镱 光纤(YDF)激光器发展最为迅速,它具有量子转换效率高、不存在浓度猝灭效应^[1]等优点,在工业加工领域 有着广泛的应用前景。尤其需要注意的是,掺镱光纤激光器发射光谱从 970 nm 延伸到 1100 nm,覆盖了多 个重要波长;吸收光谱从 800 nm 到 1050 nm,可以采用多种抽运源进行抽运,现在已经成为国内外研究的热 点。随着掺杂光纤制造技术的发展和半导体激光抽运源制作工艺的提高,掺镱光纤激光器已成功实现了千 瓦级的激光输出。当前高功率的光纤激光器大部分都是四能级系统的掺镱光纤激光器(1020~1100 nm)。 而当掺镱光纤激光器运转于三能级系统时,输出波长为 980 nm,980 nm 激光器是掺铒、掺镱光纤激光器和 放大器的重要抽运源^[2]。另外,980 nm 激光通过频率变换可获得 490 nm 蓝绿光,与现有的半导体蓝光激光 器、氩离子激光器相比可以同时拥有光束质量好、体积小、寿命长等优点,是今后蓝绿光激光发展的一个重要 方向。因此,980 nm 掺镱光纤激光器具有很高的研究价值。本文对 980 nm 光纤激光器的研究进展进行综 述,以期为其未来的发展提供参考。

收稿日期: 2013-05-15; 收到修改稿日期: 2013-06-28; 网络出版日期: 2013-09-02

基金项目: 国家自然科学基金(61205047)

作者简介:李平雪(1974—),女,博士,副教授,博士生导师,主要从事超短脉冲光纤激光及放大技术等方面的研究。 E-mail: pxli@bjut.edu.cn

2 980 nm 掺镱光纤激光器的关键问题

980 nm 掺镱光子晶体光纤(PCF)激光器属于准三能级激光器。三能级系统的能级结构和镱离子的吸收发射截面特性,给实现 980 nm 激光输出带来了一定的困难,因此国内外关于 980 nm 掺镱光纤激光器的 报道不多。

图 1 给出了镱离子的吸收和发射截面。从中可以看到,镱离子分别有两个吸收和发射截面峰值,三能级对 应的波长 980 nm 正好处于镱离子吸收截面峰值和发射截面峰值上,并且两个截面峰值近似相等,这导致了掺 镱光纤对 980 nm 激光具有非常强的重吸收效应;而四能级对应的 1030nm 波段是镱离子发射截面的另一个峰 值,吸收截面又非常小,所以掺镱光纤激光器中四能级激光很容易起振。两者存在增益竞争。并且从图 2 所示 镱离子能级简图^[3]中可以看出,三能级系统由于受激辐射跃迁下能级为基态,这就导致了 980 nm 激光起振的 阈值较高。因此,要实现 980 nm 激光输出,就需要解决激光重吸收效应和抑制四能级起振这两大问题。

图1 镱离子的吸收和发射截面

Fig. 1 Emission and absorption cross sections of Ybions

Fig. 2 Transition of Ybions

为了避免光纤对激光过多的重吸收作用,设计掺镱光纤的参数以及激光器的结构参数是非常重要的。 当光纤的掺杂浓度确定时,存在一个最佳的掺镱光纤长度,它与抽运光功率、激光器腔镜的透射率和传输系 数等参数有关。分析光纤中 980nm 和 1030nm 激光的增益,可以作为选择光纤长度的依据。

3 980 nm 掺镱光纤激光器的发展现状

对 980 nm 掺镱光纤激光器的研究开始于 20 世纪 90 年代,2000 年之后,国内外研究所陆续有了一些新的进展和突破,特别是增益型光子晶体光纤出现之后,解决了因单模光纤耦合效率差而导致的输出功率水平低的问题,在光纤激光器中显示出了巨大的潜力。下面根据连续、调 Q、锁模三种工作方式分别介绍 980 nm 掺镱光纤激光器。

3.1 掺镱光纤连续激光器

对于 980 nm 掺镱光纤激光器的研究,报道大多为获得连续激光,而关于调 Q 和锁模的报道较少一些。 1990 年,英国南安普顿大学 Hanna 等^[4]用 0.5 m,数值孔径为 0.16,纤芯直径 3.7 μm 的单模单包层掺镱光 纤作为增益光纤,抽运源使用 65 mW 的 900 nm 染料激光器,单端输出得到了最高 9.3 mW,斜率效率 67% 的 974 nm 连续激光,这是最早的对 980 nm 光纤激光器的报道。

2000年,康宁公司用 1.1 W 的 946 nm Nd:YAG 固体激光器正向抽运单模掺镱光纤,获得了最高 0.65 W,斜率效率 59%的单模 980 nm 连续激光输出^[5],该实验以两个光纤布拉格光栅(FBG)作为高反射率 腔镜和输出腔镜,提高了激光器的稳定性。随后,康宁公司又用 2 W 的 920 nm 激光二极管(LD)抽运单模 掺镱光纤获得了 500 mW 的 978 nm 激光^[6]。

微结构光纤以其具有的许多不同于普通单模光纤的特性,自诞生以来便迅速成为了研究热点。 2003年,南安普顿大学引入了自行设计的JAC(Jacketed air-clad)掺镱光纤,获得了1.4W,斜率效率为68% 的980 nm 单模连续激光^[7]。这种光纤纤芯为9μm 的单模纤芯,内包层 20μm,外包层采用特制的空气孔结构,折射率接近于1,从而增大了内包层的数值孔径,大于0.7的数值孔径提高了抽运耦合效率。同时抽运 源采用了亮度较高的915 nm 半导体激光器,使用二色镜(DM)和 FBG 作为高反腔镜和输出镜,使得光路更 加稳定,得到了较高的激光输出,实验图如图 3 所示。2004年,南安普顿大学又利用纤芯 10μm,内包层 28 μm,数值孔径 0.5 的 JAC 掺镱光纤获得了 183 mW 的 977.4 nm 激光,再经过同样规格的光纤进行放大, 得到了 2.7 W,光束质量为 1.8,斜率效率为 75%的连续激光输出,并通过 PPKTP 晶体倍频得到输出功率 为 18.1 mW 的 488.7 nm 蓝光^[8]。

图 3 JAC 光纤激光器 Fig. 3 JAC fiber laser

2005年,巴黎南大学报道了用 914 nm 掺钕钒酸钇固体激光器作抽运源,抽运单模单包层掺镱光纤产生了 978 nm 连续激光,输出功率达到 2 W,斜率效率为 72%,然后经过 PPLN 倍频晶体获得了 83 mW 的 489 nm蓝光,晶体的倍频效率为 26%^[9]。

单模单包层光纤虽然能够保证单模输出,纤芯吸收率高,光束质量接近衍射极限,但是纤芯尺寸限制了 抽运耦合效率,导致激光输出功率无法得到提高,因此更多研究转向双包层掺杂光纤和光子晶体光纤,尤其 是大模场面积(LMA)光子晶体光纤,以其无截止单模、非线性效应小、良好的色散特性等优点,得到了非常 多的青睐。

2008年,法国 Boullet 等^[10]利用 230 W 的 915 nm LD 抽运一段 123 cm 的超大纤芯棒状掺镱光子晶体 光纤,获得了 94 W 的 977 nm 激光输出,斜率效率达到 48%。所用光纤纤芯直径 80 μm,内包层直径 200 μm,数值孔径大于 0.7,实验中主要使用二色镜作为波长选择元件以抑制 1030 nm 激光的产生。同年, 德国耶拿大学^[11]采用近似的结构,用同样的 1.2 m 的棒状掺镱光子晶体光纤作为增益光纤,也得到了最高 94 W 的 980 nm 连续激光输出,光束质量为因子 2.2,其实验装置和实验结果如图 4 所示。这是目前为止 980 nm 掺镱光纤激光器的最高功率输出。

图 4 (a) 基于棒状光子晶体光纤的 980 nm 激光振荡器;(b)光谱曲线 Fig. 4 (a) 980 nm fiber laser oscillator based on rod-type fiber; (b) spectral curves

国内也有对 980 nm 掺镱光纤激光器的研究。2009 年,本课题组通过理论计算和模拟分析,选择最佳的 光纤参数,利用自制的 946 nm 固体种子源抽运普通的单模掺镱光纤,在单端输出方式下得到 372 mW 的单 模连续激光,斜率效率 21.2%;在双端输出方式下获得总功率为 1.32 W 的 980 nm 单模连续输出,斜率效率 为 75%,如图 5 所示^[12]。据我们所知这是国内首次获得瓦级的 980 nm 激光输出。实验中使用芯径为 6 µm,对 946 nm 抽运光吸收系数为 34 dB/m 的单模掺镱光纤作为增益介质,得到的激光输出线宽为 4 nm, 中心波长为 980 nm。并且使用不同长度的同种掺镱光纤进行了对比实验,验证了对光纤参数的理论计算和 模拟的正确性。在随后的研究中使用 BIBO 晶体作为倍频晶体,倍频 1.32 W 的 980 nm 单模连续激光得到 15 mW 的 490 nm 蓝绿光输出。

图 5 (a) 双端输出的 980 nm 单模掺镱光纤激光器;(b) 980 nm 光谱曲线;(c) 倍频后的 490 nm 光谱曲线 Fig. 5 (a) Double-ended 980 nm single-mode Yb-doped fiber laser; (b) spectral curves around 980 nm; (c) spectral curves around 490 nm

2011年,本课题组又使用 16 W 的 915 nm LD 分别抽运长度为 25 cm,纤芯 40 μm,内包层 170 μm 的非

图 6 (a) 大模场面积双包层 PCF 振荡器;(b) 非保偏 PCF 激光器光谱图; (c) 保偏 PCF 激光器光谱图 Fig. 6 (a) LMA double-clad PCF oscillator; (b) spectral curves with non-polarized PCF; (c) spectral curves with polarized PCF

保偏双包层 PCF 和长度为 40 cm, 纤芯 40 μ m, 内包层 200 μ m 的保偏双包层 PCF, 分别得到了 1.24 W 和 1.1 W的 980 nm 连续激光输出, 如图 6 所示, 光-光转换效率分别为 7.8%和 6.8%^[13]。

大模场面积光子晶体光纤虽然提高了激光功率输出,保持了激光器单模运转,但是还有存在着一些不 足。比如由于光纤微结构而不能实现全光纤激光器,空间耦合的效率低,棒状光子晶体不能弯曲易折断等, 这些都是光纤激光器在以后的发展中需要考虑的问题。

3.2 掺镱光纤调 Q 激光器

为了获得高峰值功率、高重复频率、窄脉宽的激光输出,人们引入了调 Q 和锁模技术。调 Q 技术可以将 激光脉宽压缩至纳秒量级,峰值功率可以达到 10⁶ W 以上,而锁模技术可以将激光脉宽压缩至皮秒甚至飞秒 量级,峰值功率可达到 10¹² W。2002 年,南安普斯顿大学用长度较短的 JAC 掺镱光纤作为增益介质,实现 了 980 nm 声光调 Q 掺镱光纤激光器,重复频率为 0.65 MHz 时,获得输出平均功率 250 mW 的脉冲激光, 单脉冲能量 1.2 μJ,峰值功率 60 W^[14]。

对于 980 nm 调 Q 光纤激光器,本课题组也有相关的研究。2010 年,本课题组报道了平均功率为 73 mW的 980 nm 准连续单模掺镱光纤激光器,重复频率为 16 kHz,如图 7 所示。然后将其作为种子源进行 功率放大,放大器的单模光纤长度为 28 cm,放大后得到平均功率为 167 mW,峰值功率为 700 W,脉冲宽度 为 15 ns 的脉冲激光,放大器结构如图 8 所示。实验中抽运源使用自行研制的 946 nm 调 Q 的 Nd: YAG 固 体激光器,抽运激光直接经过透镜耦合进入长度为 23.5 cm 的单模掺镱光纤,在 16 kHz 重复频率下,由示波 器测得激光脉冲宽度为 10 ns,使用光谱仪测得激光线宽为 4 nm,1030 nm 波段没有起振。放大器中放大光 纤两端被研磨成 8°角,以减小掺镱光纤中的放大自发辐射效应,斜率效率达到 26%。

图 7 (a) 980 nm 准连续单模激光种子源; (b) 980 nm 种子源的激光输出曲线

Fig. 7 (a) 980 nm quasi-continous-wave single-mode laser source; (b) input-output characteristics of 980 nm laser source

图 8 980 nm 单模掺镱光纤放大器

Fig. 8 980 nm single-mode Yb-doped fiber amplifier

2010年,法国 Boullet 等^[16]首先使用 1.16 m 的纤芯直径为 20 μ m 的双包层掺镱光纤作为增益光纤,腔 内插入声光调制模块形成调 Q 机制,获得功率近 1 W 的 977 nm 调 Q 种子源,然后利用 125 cm 的纤芯直径 80 μ m,内包层直径 200 μ m 的超大纤芯棒状掺镱光子晶体光纤作为放大光纤,通过主振荡功率放大 (MOPA)结构进行放大,最终得到 80 kHz 时平均功率 57 W,脉冲宽度 12 ns,单脉冲能量达到 0.7 mJ 的 977 nm 调 Q 脉冲激光输出,这是迄今为止最高的调 Q 激光平均功率报道,实验结构如图 9 所示。

3.3 掺镱光纤锁模激光器

980 nm 掺镱光纤锁模激光器是最近几年最新的研究成果,到目前为止只有法国波尔多大学的一个课题组使用两种方法实现。2010年,Lhermite 等^[17-18]设计了腔型为环形腔,利用非线性偏振旋转(NPR)锁模的方法

图 9 调 Q 光纤振荡器及放大器

Fig. 9 Q-switched fiber oscillator and amplifier

实现锁模的 976 nm 光纤锁模激光器,如图 10 所示,其中 R_{max} 为对 915 nm 的全反镜,PF 为无源光纤。整个振荡器使用空间耦合方式,实验中使用了纤芯直径为 20 μm 的双包层掺镱光纤作为增益光纤,两组 1/2 和 1/4 波片组用来控制腔内激光偏振态,一段 3 m 的单模无源光纤起到增加腔内非线性效应的作用,锁模可以实现自启动,最终得到输出功率 480 mW,重复频率 40.6 MHz,单脉冲能量 12 nJ,峰值功率达到 37 kW,脉宽 1.44 ps 的 976 nm 光纤锁模激光,腔外压缩后脉宽为 286 fs。随后他们又利用 MOPA 结构,纤芯/包层为 80/200 μm 的棒状渗镱光子晶体光纤作为放大光纤,将锁模激光放大到功率 40 W,脉宽 1.56 ps,单脉冲能量 1 μJ。

图 10 (a) 非线性偏振旋转锁模光纤激光器; (b) 压缩后的脉冲自相关曲线

Fig. 10 (a) NPR mode-lock fiber laser; (b) autocorrelation trace of the compressedpulse

2011年,Lhermite等^[19]又报道了利用半导体可饱和吸收镜(SESAM)锁模辅助非线性偏振旋转锁模的方法 实现锁模的 976 nm 全正色散光纤振荡器,如图 11 所示。增益光纤使用了纤芯/包层为 80/200 μm 的棒状掺镱 光子晶体光纤,光路中加入很多双色镜以达到抑制 1030 nm 波段起振的作用,最终得到的 976 nm 激光功率为 4.2 W,重复频率 8.4 MHz,单脉冲能量 500 nJ,脉宽 23 ps,腔外使用体光栅对可以压缩至 460 fs。

这两种方法都是运用的空间耦合的方式,而锁模要求腔内纵模稳定锁定,腔内运转功率密度可控,因此 振荡器稳定性难免稍差,对光路调试有一定的要求。大模场面积光子晶体光纤难于用在全光纤结构中,而普 通的双包层光纤可以克服这一问题,因此双包层光纤可以用来做一些新的尝试。本课题组正在进行对 980 nm锁模光纤激光器的研究,实验装置示意图如图 12(a)所示,抽运源采用了功率可达 50 W 的 915 nm LD,增益光纤采用纤芯为 40 µm,内包层为 170 µm 的非保偏双包层 PCF,光纤两端均处理成 8°角,隔离器保 持腔内激光单向运转,主要利用 SASEM 来实现锁模。目前已经有了一些初步研究进展,实现了 980 nm 的 调 Q 锁模。调 Q 锁模图片及输出光谱图如图 12(b),(c)所示。

图 12 (a) 980 nm 锁模光纤激光器实验装置; (b) 调 Q 锁模脉冲序列; (c) 输出光谱图

Fig. 12 (a) Schematic setup of 980 nm mode-lock fiber laser; (b) Q-switched mode-locked pulse train; (c) spectral curves

4 结束语

对于 980 nm 连续激光器,耦合效率更高的双包层光纤和光子晶体光纤是现在研究的热点,可以在此基础上,进一步从理论上分析和优化增益光纤的参数,抑制四能级起振,寻找更佳的抽运耦合方式,以便更好地提高振荡器的稳定性,发挥光纤激光器结构简单,体积小的优势。

在 980 nm 脉冲激光器的研究中,大模场面积光子晶体光纤激光器的发展最好。虽然大模场面积光子 晶体光纤难以实现全光纤化,振荡器稳定性无法得到保证,对于光路调节有着很高的要求,但是相比双包层 掺杂光纤在抑制非线性效应,避免端面热损伤和热效应方面更有优势,在 980 nm 这一特殊三能级系统中目 前还是最佳的选择。

综上所述,980 nm 光纤激光器有着广泛的应用前景,但是目前对 980 nm 连续和脉冲光纤激光器的研究 仍需要更高功率的输出和更稳定的结构。要实现高功率的 980 nm 连续和脉冲的光纤激光器,还需要在理 论、实验、工艺技术等方面进行很多的研究工作。相信在不久的未来,980 nm 光纤激光器会有更大的发展。

参考文献

- 1 Huang Xiujiang, Liu Yongzhi, Sui Zhan, *et al.*. Characteristics and design of Yb³⁺-doped fiber laser[J]. High Power Laser & Particle Beams, 2004, 16(12): 1531-1534.
- 黄绣江,刘永智,隋 展,等. 掺 Yb³⁺光纤激光器的特性与设计[J]. 强激光与粒子束,2004,16(12):1531-1534.
- 2 K Muro, T Fujimoto, S Okada, *et al*.. High power 980 nm pump laser diodes with decoupled confinement hetero-structure [C]. Conference on Amplifiers and their Applications, 2001. OMB2.
- 3 P Jelger, M Engholm, L Norin, *et al.*. Degradation—resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber[J]. J Opt Soc Am B, 2010, 27(2): 338-342.
- 4 D C Hanna, R M Percival, R Perry, *et al.*. An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 μ m to 1.162 μ m and three-level operation at 974 nm[J]. J Mod Opt, 1990, 37(4): 517-525.
- 5 L A Zenteno, J D Minelly, M Dejneka, *et al*. 0.65 W single-mode Yb³⁺-fiber laser at 980 nm pumped by 1.1 W Nd: YAG [C]. OSA Trends in Optics and Photonics, 2000, 34: 616-618.
- 6 J D Minelly, L A Zenteno, M J Dejneka, *et al.*. High power diode pumped single-transverse-mode Yb³⁺ fiber laser operating at 978 nm[C]. Optical Fiber Communication Conference, 2000. PD2.
- 7 K H Ylä-Jarkko, S A Alam, P W Turner, *et al.*. High-power, low-noise, Yb³⁺-doped, cladding-pumped, three-level fiber sources at 980 nm [J]. Opt Lett, 2003, 28(13): 1093-1095.
- 8 D B S Soh, C Codemard, S Wang, *et al.*. A 980 nm Yb³⁺-doped fiber MOPA source and its frequency doubling[J]. IEEE Photon Technol Lett, 2004, 16(4): 1032-1034.

- 9 A Bouchier, G Lucas-Leclin, P Georges, *et al.*. Frequency doubling of an efficient continuous wave single-mode Yb³⁺doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO₃ waveguide[J]. Opt Express, 2005, 13(18): 6974-6979.
- 10 Johan Boullet, Yoann Zaouter, Rudy Desmarchelier, *et al.*. High power ytterbium-doped rod-type three level photonic crystal fiber laser[J]. Opt Express, 2008, 16(22): 17891-17902.
- 11 Fabian Roeser, Cesar Jauregui, Jens Limpert, *et al.*. 94 W 980 nm high brightness Yb³⁺-doped fiber laser[J]. Opt Express, 2008, 16(22): 17310-17318.
- 12 Shuzhen Zou, Pingxue Li, Linghao Wang, *et al.*. 980 nm Yb-doped single-mode fiber laser and its frequency doubling with BIBO[J]. Appl Phys B, 2009, 95(4): 685-690.
- 13 Li Pingxue, Zhang Xuexia, Liu Zhi. Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm[J]. Chin Phys Lett, 2011, 28(8): 084206.
- 14 R Selvas, J K Sahu, J Nisson. *Q*-switched 980 nm Yb-doped fiber laser[C]. Pacific Rim Conference on Lasers and Electro-Optics, 2002. 565-566.
- 15 Li Pingxue, Zhang Xuexia, Zou Shuzhen, *et al.*. A quasi-continuous-wave 980 nm Yb-doped single-mode fiber laser and amplifier[J]. Chinese J Lasers, 2010, 37(7): 1688-1691.
 李平雪,张雪霞, 邹淑珍, 等. 980 nm 准连续单模掺镱光纤激光器及放大器实验研究[J]. 中国激光, 2010, 37(7):
- 1688-1691.
 16 Johan Boullet, Romain Dubrasquet, Capucine Medina. Yb-doped fiber laser system generating 12 ns, 0.7 mJ pulses at 82 kHz at 977 nm[C]. SPIE, 2010, 7580; 758005.
- 17 J Lhermite, G Machinet, C Lecaplain, *et al.*. High-energy femtosecond fiber laser at 976 nm[J]. Opt Lett, 2010, 35(20): 3459-3461.
- 18 Guillaume Machinet, Jerome Lhermite, Eric Cormier. 40 W picosecond fiber laser at 976 nm[C]. CLEO, 2011, CMS2.
- 19 J Lhermite, C Lecaplain, G Machinet, *et al.*. Mode-locked 0.5 μ J fiber laser at 976 nm[J]. Opt Lett, 2011, 36(19): 3819-3821.